The Jeffreys-Lindley Paradox and Discovery Criteria in High Energy Physics

Robert D. Cousins



The Jeffreys-Lindley paradox displays how the use of a p-value (or number of standard deviations z) in a frequentist hypothesis test can lead to inferences that are radically different from those of a Bayesian hypothesis test in the form advocated by Harold Jeffreys in the 1930’s and common today. The setting is the test of a point null (such as the Standard Model of elementary particle physics) versus a composite alternative (such as the Standard Model plus a new force of nature with unknown strength). The p-value, as well as the ratio of the likelihood under the null to the maximized likelihood under the alternative, can both strongly disfavor the null, while the Bayesian posterior probability for the null can be arbitrarily large. The professional statistics literature has many impassioned comments on the paradox, yet there is no consensus either on its relevance to scientific communication or on the correct resolution. I believe that the paradox is quite relevant to frontier research in high energy physics, where the model assumptions can evidently be quite different from those in other sciences. This paper is an attempt to explain the situation to both physicists and statisticians, in hopes that further progress can be made.

Cite as:
  arXiv:1310.3791 [stat.ME]
  (or arXiv:1310.3791v1 [stat.ME] for this version)